Appendix 6 New Features in v4.0

The Version 4.0 adds several features, including a totally new Plus version. Now the program includes these 4 levels:

- Roll Center Calculator v4.0 (front suspension only)
- Roll Center Calculator 'Plus' v4.0 (front and rear suspension)
- Circle Track Analyzer v4.0 (front and rear suspension, engine, vehicle, track and lap time simulation)
- Circle Track Analyzer 'Plus' v4.0 (all CTA features plus advanced inputs and outputs)

New Calculations

Roll Center for Double A Arm and McPhearson Strut suspensions are now calculate using the Force Based Roll Center methodology. This method is more accurate and realistic. You will no longer see roll centers being calculated, say, 50 or 1000 inches beyond the track of the car, which never made much sense. Force Based Roll Centers are more accurate than the old "Kinematic Roll Center" method of earlier versions. There are options for you to display either or both, and go back to the old Kinematic Roll Center method in you want. This is set under 'Options' in the Front Suspension (Roll Center Calculator) screen. Fig A20.

The program's Lap Time and "On Track" Handling Calculations now include mass effects of the vehicle. This will, produce more realistic handling, spring, and shock motion, body roll, dive, squat, etc as it goes around the track. Circle Track Analyzer and Circle Track Analyzer Plus Versions only.

You can now enter details about Bump Springs and Ride Height in the Front Suspension screen, and watch their effect as you go through dive, roll, and pitch. Fig A21, Fig A29.

The program lets you specify if the shock is mounted in the middle of the spring, as with coil over springs. Or you can specify if the shock is farther inboard or outboard of the spring and by how much. This can greatly affect shock absorber performance and bump spring performance if it is mounted on the shock absorber. Fig A21.

IMPORTANT: If the Bump Springs are mounted on the shocks, the program will calculate the force the bump springs adds to the *springs*. For example, if the shocks are, say, 5" outside the springs, the bump springs will have more effect out there because the motion ratio is higher. Let's say the actual bump spring force is 400 lbs at the shock. But at the spring itself, this could be the same as a bump spring on the spring adding 900 lbs. The program will report this as 900 lbs because that is the effect on the suspension and handling.

You can now include some simple shock absorber inputs which will affect the wheel loads and the handling ratings for the program's Lap Time and "On Track" Handling Calculations. Circle Track Analyzer and Circle Track Analyzer Plus Versions only. Fig A21

IMPORTANT: The vehicle dynamics simulation is assuming a perfectly smooth track and only smooth applications of throttle, brake and steering. In real racing this is hardly the case. Real world, more abrupt changes in these inputs to the vehicle will have a large effect on shock velocities and therefore shock forces.

The Circle Track Analyzer Plus version allows you to input more details about shocks and travel limits of the springs. You can also import shock data from proper versions of the Performance Trends Shock Dyno software. Circle Track Analyzer Plus Version only. Fig A21 – A24 B.

Program now has refined the method of calculating the spring Motion Ratios for Double A Arm and McPhearson Strut suspensions to better match the Suspension Analyzer.

The program will now calculate how much the Ball Joint/Spindle Angle changes as you go through suspension movement. This will help you identify if the Ball Joints can go into bind, being pushed past the limit in Ball Joint Angle change. Fig A28

Program now calculates several suspension handling outputs each time you calculate a lap time. These new outputs like Dive, Roll, Squat, etc can be reported or graphed.

Original Report Data, version 3.6 or earlier

Time	Feet
MPH	Accel Gs
% Throttle	Eng RPM
Turn #	Curvature
Downforce	Corner Gs

New Report Data, Circle Track Analyzer v 4.0

OSUS Factor	Left Camber
Right Camber	R.C. Left
R.C. Height	Roll
Dive	Squat
Left Scrub	Right Scrub
L Upper BJ Angle Change	L Lower BJ Angle Change
R Upper BJ Angle Change	R Lower BJ Angle Change

New Report Data, Circle Track Analyzer v 4.0 Plus

LF Tire Force	RF Tire Force
LR Tire Force	RR Tire Force
Total Tire Force	LF Bump at Tire
RF Bump at Tire	LR Bump at Tire
RR Bump at Tire	LF Spring Force
RF Spring Force	LR Spring Force
RR Spring Force	LF Shock Force
RF Shock Force	LR Shock Force
RR Shock Force	LF Shock Vel
RF Shock Vel	LR Shock Vel
RR Shock Vel	LF Ride Ht
RF Ride Ht	F Aero Downforce
R Aero Downforce	Change CG Ht
L Bump Force	R Bump Force

Program now has a more detailed Roll Bar Rate calculator with more inputs and better accuracy. Fig A21, A26.

The results now let you input or watch "Rear Squat" in the calculations, how much the rear suspension goes down measured from directly above the rear axle to the ground.

The Oversteer/Understeer factor has been refined to be more realistic. In earlier versions it depended too much on the front to rear weight distribution.

Ride Height is now and input and you can watch Ride Height change as the car goes through Dive, Roll and Squat. Squat (the amount the rear ride height goes down) is a new input and output. Fig A29

New Features

You can now write the results on the Reports screen to an ASCII data file for doing your own custom analysis in other programs, like Microsoft Excel. Circle Track Analyzer Plus Version only. Fig A30.

You can now shim the upper A Arms up or down in the Front Suspension (Roll Center Calculator) screen. Fig A31.

The program now will let you report more than double of the points as before when you go around the track, for more detailed analysis, reports and graphs. Circle Track Analyzer and Circle Track Analyzer Plus Versions only.

The engine screen and engine graph are now enlarged to show more detail. Also, the Engine Screen has a note explaining the Max RPM and how critical it is to get that correct. It also has a feature to help you enter data to realistically represent the power curve at its max RPM, past the HP peak. The new version has several new crate motors added as examples. Circle Track Analyzer and Circle Track Analyzer Plus Versions only. Fig A32.

The program now works much better when closing the Analyze Suspension screen. It also gives you 2 options of "Back" (simply closing the screen) or "Back (and save as baseline)". Previous versions would ask you each time you closed this screen if you wanted to save the current results as the Baseline. Circle Track Analyzer and Circle Track Analyzer Plus Versions only. Fig A33.

Many screens and input fields are now larger to accommodate longer file names. Fig A34.

The program now lets you pick which columns of output data to display and print under the "View" option on the Report Screen. These combinations of which columns to view can be stored as "templates" for easy recall in the future. Circle Track Analyzer Plus Version only. Fig A35.

"Modifieds" are now added to the list of general body types for Aero inputs in the Vehicle Specs screen. Circle Track Analyzer and Circle Track Analyzer Plus Versions only.

Program is much more streamlined for calculating the Handling Ratings from the Main Screen, and backing out of the "Analyze Handling Performance" screen. Circle Track Analyzer and Circle Track Analyzer Plus Versions only.

There is a new Option in the Front Suspension screen of allowing very small inputs for RC size cars.

The program now works much better when calculating the handling rating. Earlier versions could require you to do the calculation 2 times to work properly.

Program now better remembers the handling rating when you enter other screens and do not make any modifications in that screen. Circle Track Analyzer and Circle Track Analyzer Plus Versions only.

Program now does not let you enter screens from the main screen until all calculations are done refreshing the handling rating on the main screen. This can avoid problems if you click through screens too fast. Circle Track Analyzer and Circle Track Analyzer Plus Versions only.

Fixed a bug where canceling from printing to a PDF printer could cause program to stop.

Doubled the max size allowed for Comments to 800 characters.

Printing

Program has an added option for "Print Suspension Outputs" so you can print either the standard outputs, or the new handling outputs. Circle Track Analyzer and Circle Track Analyzer Plus Versions only.

You can now load a picture file (.jpg) on the Main Screen and in the Front Suspension (Roll Center Calculator) screen and have it appear on printouts. Fig A36, A38, A42.

You can now specify a "Company Logo" (.jpg) file and 2 lines of "Title Text" to be included in your printouts. Circle Track Analyzer Plus only. Fig A37, A38..

Program now lets you pick which columns of output data to display and print under the "View" option on the Report Screen. If you select to print all data, only the columns displayed will be printed, up to 15 columns max. Circle Track Analyzer Plus Versions only. Fig A35.

Program has an added a Preference for printer width adjustment.

The program can now better print the title of columns of output, which could be up to 3 lines long of text.

Help screens are now shown in Notepad so you can print them if you want.

Graphing

You can now graph up to 4 different data types on a graph. Each of these can be assigned a factor, like "x 100". This way small numbers like "Bump at Tire" will show up if you also include very large numbers like "RPM" or "Spring Force". You can also save graph "templates" of various combinations of data and scaling factors under different names for use in the future. Fig A39.

You have a graph option of "(down shown negative)". If you choose one of these option, then a number like Dive will be graphed in the opposite direction. For example, if the Dive number increases, the graph line will go up on the graph. However, the motion in the car is for the car to go *down* as Dive increases. If you choose the "(down shown negative)" option, increasing Dive will be a graph line that goes *down* and can be easier to understand. Fig A39.

The program now lets you graph results from up to 6 different tests. Fig A40.

Because these larger labels can take up more space, and with up to 24 graph lines which can be graphed (4 data types and up to 6 different tests), there may not be enough space to display all labels. Then the program will then produce "More" buttons which can appear either above or below these labels if they can not all be displayed on the screen, so you can scroll through all the labels. Circle Track Analyzer and Circle Track Analyzer Plus Versions only. Fig A40.

There is now an option to Draw Segment Lines on the Graph Screen under Format. If you choose this, vertical lines are drawn at the start of each turn and each straightaway. These lines are drawn based on the current (latest) data. So if the latest run was a 13 second lap time and the other runs you graph are about 16 seconds, these lines are based on the 13 second lap times. Circle Track Analyzer and Circle Track Analyzer Plus Versions only. Fig A41.

Background color choice is now checked in the dropdown menu in the Graph screen. Circle Track Analyzer and Circle Track Analyzer Plus Versions only.

The Graph Line Thickness has been adjusted to be slightly thinner for the "thick" settings. Circle Track Analyzer and Circle Track Analyzer Plus Versions only.

In the Graph Screen under Format, there is a new option for printing the graph labels larger than before. Fig A41.

Figure A 21 Bump Spring Inputs	re to get Bump Spring and Shock Options
Front Suspension Specs [H3817-2019-ChassisCenter] Rade Eile Options Eile Suspension Tune Shim Table & Cash Commerce Spring(Chast Detaile Help	
Back He Options Edit Suspension rype Shift Table & Graph Comments Spring/Shock Details This is front view of suspension so left side of screen is actual Ride Ht = 1.8 Bide Ht = 1.8 Plus version has this option described in Figs A22, A23, A24. Plus version has this option described in Figs A22, A23, A24. When the Bump Spring is encountered, you will see the Wheel Rate increase from the force produce by the Bump Spring. Lt Swing Arm 37.7. Ht 2.9 Rt Swing Arm 41.1, Ht 1.4 Spring is not on the spring, the force shown here is not the force of the bump spring on the shock, but the effective force it puts on the suspension spring.	ecs Right Left ength 8.00 7.50 pompression 1.65 59 g Angle 0 0 g Rate 500 550 g Rate 301 123 n Ratio Sq. 218 223 Force 148.82 na n Ratius 4.7 4.5 eer, deg -5.23 5.00 Camber, deg -5.23 5.00 Camber, deg -5.23 5.00 Camber, deg -5.23 5.00 Camber, deg -5.73 5.73 Bar Mate, lb/in Clc 267 pin Length, in Clc 267 oint/Spindle Angle Change 11.50 r Ball Joint 18.92 11.50 g Agat Draw Big nch Roll, deg Rear Squat Q 0 0
	 Right Spring Details Bump Spring Details Right Bump Spring Yes, on shock Shock Movement to Bump, in Bump Spring Rate, Ibs/in 400 Spring Travel Typical Max Commession, in Rebound, in
If you have the Plus version, you will have many more choices for Spring Travel and Shock inputs, some of which are shown here. One choice is to use a complete shock dyno curve. This is discussed in Figs A22 and A23.	Shock Details Shock Typical High Tie-Down Compression Rating Rebound Rating Shock Mounts 4.75" outboard the spring
Choose here if the shock is not mounted centered in the spring, like a Coil Over Click here for more details	Note: Choose if you are using a Bump Spring and where the Bump Spring is located. Then enter the amount of Spring or Shock movement to the point where the bump spring is encountered. Also select how much 'Max' spring movement until a hard stop is encountered in the suspension. Choose Type of Shock and where shock is located compared to spring. Click Help for more info.
	Keep Settings Help Cancel Print

Figure A 22 Copying Shock Data from Performance Trends' Shock Dyno Software

If you have an appropriate Shock Dyno Plus version, you can click on the 'Send' option and be presented with the 4 corners of the car. For each corner you can select which shock or coil over's data to send, or choose "None" for that particular corner. You may have to open other Shock Dyno files, do the Send and select different corners of the car for sending shock data for different shocks.

Increditions & California Conditions & California Conditions & California Conditions & California Conditional Conditiona Conditiona Conditiona Conditiona Conditiona Condition	Iculated Results Compression: 200.1 at 10.5in Rebound: -235.8 at 10.5in Temp: 72.9 deg. (70.0-75.6) Operator: Ole Martin Mobeck Adjustment: 3 clicks #1	T Assign Shocks Right Front #1 Left Front #1 Right Rear #2 Left Rear #2 Notes:	Choose which shock to send to each corner of the car in the DataMite program or choose "None". Here we showing sending Shock #1 from the file currently displayed on the main screen to the front shocks and Shock #2 to the rear 2 shocks Because these shocks are coil overs, the program will include the spring data.
Point Velocity 1 10,500 2 10,000 3 3,500 4 3,000 5 8,500 6 8,000 7 7,500 8 7,000 9 6,500 10 6,000 1 Shock Prop	Force 200.1 194.9 189.5 184.5 179.8 175.1 170.6 166.1 161.5 156.7	Export Data Help Cancel Prin	Click OK after reading message about this data bring copied to the computer's clipboa

As shown in the picture above, the Export Data will copy this data to the computer's clipboard. This is the same process as doing a Windows Ctrl-C or a Copy process. Therefore, do not do a copy or paste command before you go to your Circle Track Analyzer program to import this data.

Figure A 23 Importing Shoc	k Data from Performance Trends' Shock Dyno Software
Front Suspension Specs [Untitle	d]
Back File Options Edit Suspension Type	Shim Table & Graph Comments Spring/Shock Details Help
This is front view of sus Camber Gain: -1.11 Gain b an In Plus Version, click here to Dyno table shown below, and is also available in the Rear S	Pension so left side of screen is actua ased on 1" Dive d 0 deg Roll. bring up the Shock I Fig A 24. This option Suspension screen.
Shock Specs	
Right Front Left Front	nt C Right Rear C Left Rear
	Labels/Comments
	Comment From Shock Dyno: #1 - Dixon Ohlins\r6 2007
Click here to bring up the "Import Shock Dyno Data" field shown to the right. Click the Import button and the data from the Shock Dyno program will be written into this screen for the shocks you picked to bring over from the Shock Dyno program	Import Shock Dyno Data Right Front Spring Rate: 562.52 Spring Free Length: 2.35 Adjustment: File Name: #1 - Dixon Ohlins/y6 2007 ohlins track shock service Data Point 1 4.750 Data Point 2 4.500 Data Point 3 3.500 Data Point 4 -2.500 Data Point 5 1.500 Data Point 5 1.500 Data Point 5 1.500 Data above was organized, then placed in clipboard by the Shock Dyno program Import Cancel 1 1.500 120.0 2500 176.3 1.500 120.0 2500 176.3 1.500 211.7 1.500 18.1 1.500 18.1 1.500 121.7 2500 18.1 1.500 120.9
	Clear Print Sort
3-D Suspension Analyzer	×
No shock dyno data found in clip board for importing.	
You must have the correct version of Performance Tre	nds Shock Dyno software and click the 'Send' option at the top of the Shock Dyno's main screen to copy data to the computer's clip board.
	OK

These pictures are from our Suspension Analyzer (which allows for more detailed inputs) to explain this input

Strant Supportion Space [Unrithed] Back [bit Options Eds Supportion type Shim Table & Graph Comments Spring/Shod/Details Hep The lattory view of suppersion to lift table of screen is actually right ided of car. Camber Gain: -1.11 Camber Gain: -1.17 Date Spring Angle [1] (1] (1] (1] (1] (1] (1] (1] (1] (1] (Figure A 2	28 Ball Jo	int/Spindle	e Angle Cl	nange					
From Supportion Spece United by appendix to be a support of the spece of the spec										
Back Effe Options Edit Supervision Types Shim Table & Granch Comments Summa/Shock Details Help Camber Gain: -1.11 This is ford very dispervision is dia of a create is actually off tide do in the space is actually of tide do in the space is a creater do in the space is actually of tide do in	Front Sus	pension Spec	s [Untitled							
The infort view of supervision so left ade of scales () a colleging in the information of the ade of scales () and () an	<u>B</u> ack <u>F</u> ile Op	tions Edit Sus	pension Type	5him Table & Gra	aph Comments	Spring/Shock D	etails Help			
Lamber Gam: -1.11 Gamber dear O'Live Lamber Gam: -1.17 Spring Length 8.46 8.46 Spring Angle Spring Pad		This is fr	ont view of suspe	nsion so left side	of screen is actua	ly right side of c	ar. Otł	er Specs	Right Left	
Spring Compression 61 61 Spring Compression 61 930 Spring Pate 900 625 Wheel Rate 900 625 Wore Deals Products use and produces a negative change 900 Wore Deals Products use and produces a negative change 900 Wore Deals Products use and produces a negative change 900 Wore Deals Products use and produces a negative change 900 Wore Deals Products use and produces a negative change 900 Wore Deals 9	Camber Ga	in: -1.11	Gain bas and I	ed on 1'' Dive) dea Boll		Camber Gain:	-1.17 Sp	ring Length	8.46 8.46	
Spring Angle [10,0] [10,0] Positive Ball Joint/Spindle Angle Change Positive Ball Joint David Ball Spindle Angle Change Positive Ball Joint David Ball Joint/Spindle Angle Change Positive Ball Joint David Ball David Joint David Ball Joint/Spindle Angle Change Positive Ball Joint David Ball David Joint David Ball Joint David David Ball David Da				o dog riom			Spi	ring Compressi	on .61 .61	
Spring Rate Tool Construction Positive Ball Joint/Spindle Angle Change means these angles are getting smaller. The Lower Ball Joint Angle actually got bigger in this case and produces a negative change. Scrub Radius: <		i				(Spi	ring Angle	19.0 19.0	
Wheel Rate 206 201 Wheel Rate 206 201 Motion Ratios 5q. 202 201 Bump Force Scrub Radius 7.0 4.5 Positive Ball Joint/Spindle Angle Change means these angles are getting smaller. The Lower Ball Joint/Spindle Angle atually got bigger in this case and produces a negative change. Scrub Radius 7.0 4.5 Drag. Roll Joint Parts height = 2.6 Drag. Roll Joint Spindle Angle Scrub Radius Pan Angle Bar Rate. B/in Roll Bar Pate. B/in Roll B	1 1	i				1	Sp	ring Rate 🕒	700 625	
Motion Ratio Sq. 297 221 Bump Force means these angles are getting smaller. The this case and produces a negative change. This case and produces a negative change. Motion Ratio Sq. 298 238 L Swing Am 51.0. H 2.5 Rd Center height = 2.6 Roll Center height = 1.6 You can watch Ball Joint/Spindle Angle Change as you put suspension through motion. If this angle change is high, you are likely putting the ball joint into bird, pushing it beyond its limits. The result is a state of the state		!					W	eel Rate	208 201	
Bump Porce Bump Porce Bump Porce Positive Ball Joint/Spindle Angle Change Fr. deg 1.37 3.75 Lower Ball Joint/Spindle Angle Change Fr. deg 1.37 3.75 Lissing Am 51.0, Ht 25 Fr. deg 1.36 3.67 7.79 Rid Enter height = 2.6 Out an watch Ball Joint/Spindle Angle 6.39 1.54 Ding, Rolf Lenter height = 2.6 Out and watch Ball Joint/Spindle Angle 6.39 1.54 Rolf Enter height = 1.8 Out and watch Ball Joint/Spindle Angle 6.35 1.57 Rolf Enter height = 1.8 More Details feld Ont Spindle Angle 6.35 6.57 Rolf Enter height = 1.8 More Details feld Ont Spindle Angle 6.35 6.57 Bioht DN Height More Details feld Ont Compared In its for its		8				~~	Mo	tion Ratio Sq.	.297 .321	
Serub Radius Zord Escub Radius Zord Zord Escub Radius Zord Zord <thzord< th=""> Zord <thzord< th=""></thzord<></thzord<>					7 8		Bu	mp Force	na na	
Positive Ball Joint/Spindle Angle Change means these angles are getting smaller. The bis case and produces a negative change. per, deg maher, deg 137 1375 L Swing Aim 51.0, Ht 2.5 Rt Scout: JB5 You can watch Ball Joint/Spindle Angle Change as you put suspension through metion. If this angle change is high, you re likely putting the ball joint into bind, pusting it beyond its limits. Roll Bart Ate, Ib'm Ball Soint/Spindle Angle Change as you put suspension through metion. If this angle change is high, you re likely putting the ball joint into bind, pusting it beyond its limits. Roll Bart Ate, Ib'm Ball Soint/Spindle Angle Change as you put suspension through metion. If this angle change is high, you re likely putting the ball joint into bind, pusting it beyond its limits. Roll Bart Ate, Ib'm Ball Soint/Spindle Angle Change as you put suspension through metion. If this angle change is high, you re likely putting the ball joint into bind, pusting it beyond its limits. Store Vice. Roll, Squat (Pice Ball Joint 23.125 Stati Layout Dimensions Right KD 2 27.75 C 27.75 D Lower Fami Prot C 27.75 D Lower Fami Prot C 27.75 D Lower Spring Pad 12.55 Let (X) 12.55 Height 12.155 G 12.55 Lower Fami Prot C 27.75 D Lower Fami Prot E 19.75 Lower Fami Prot 19.5 Totes Incher Angle 24.75 Totes Incher Angle 24.75 Totes Incher Angle 24.75 E 19.75 13.75 Lower Fami Prot 19.5 Totes Incher Angle 29.5 Totes Incher Angle 29.5 Totes Incher Angle 29.5 E 19.75 13.75 Lower Fami Prot 19.5 Totes Incher Angle 29.5 <t< td=""><td></td><td></td><td>~ /</td><td>,</td><td>1 2</td><td></td><td>Se</td><td>rub Radius</td><td>7.0 4.6</td><td></td></t<>			~ /	,	1 2		Se	rub Radius	7.0 4.6	
I Swing Am 51.0, Ht 2.5 R Send: JBS You can watch Ball Joint Angle actually got bigger in this case and produces a negative change. The Comber. deg 3.06 2.58 I Swing Am 51.0, Ht 2.5 R Send: JBS You can watch Ball Joint/Spindle Angle Change as you put suspension through motion. If this angle change is high, you are likely putting the ball joint into bind, pushing it beyond its limits. Inter Angle 300 300 Static Layout Dimensions R JSAT More Deals Left X Height (2.27.73) Inter Angle Ball Joint/Spindle Angle (Ar,71) Ball Joint/Spindle Angle (Ar,71) Ball Joint/Spindle Change Upper Ball Joint Ball Joint/Spindle Angle (Ar,71) Ball Joint/Spindle Change (Br) Ball Joint/Spindle Change (Br) Ball Joint/Spindle Change (Br) Ball Joint/Spindle Angle (Ar,71) Ball Joint/Spindle Angle (Br) Ball Joint/Spindle Angle (Change as you put suspension through (Br) Ball Joint/Spindle Angle (Change as you put suspension through (Br) Ball Joint/Spindle Angle (Br) Ball Joint/Spindle Angle (Change as you go around the file of the rold leand due to correing force, compared to at static leanding the Pall (Dr) Dr aw Big (Pr) Circle Track Analyzer 'Plus' v4.0 Performance Trends [Asphalt Modiffied Chevelle clip Ted (Br) Change as you go around the track. You can also graph this data. Squat Left Scrub Notes Drawer Ball Angle (Br) Angle Pupper Ball Angle (Br) Angle Pupper Ball Joint/Spindle Angle (> □	Positive Ball	.loint/Spind	le Angle Cl	nange	ber, deg	-1.97 3.75	
Lower Ball Joint Angle actually got bigger in this case and produces a negative change. k. in 66.5 95.97 90.52 Lt Swing Am 51.0, Ht 2.5 Ris Getter. Job5 You can watch Ball Joint/Spindle Angle Change as you put suspension through motion. If this angle change is high, you are likely putting the ball joint to bind, pushing it beyond its limits. Roll Bar Hate, Ib/in Ball Joint/Spindle Angle Change as you put suspension through motion. If this angle change is high, you are likely putting the ball joint to bind, pushing it beyond its limits. Roll Bar Hate, Ib/in Ball Joint/Spindle Angle Change as you put suspension through motion. If this angle change is high, you are likely putting the ball joint to bind, pushing it beyond its limits. Roll Sart Layout To Ball Joint Spindle Angle Static Layou Dimensions More Detais Upper Ball Joint 22.75 Wore Detais Upper Sping Pad 18.55 Height 11.05 To Ball Joint 22.75 To Ball Joint 22.75 D 11.43 Age Lever Frame Pivot 18.75 12.55 To Ball Joint 22.75 To Ball Joint 22.75 To Ball Joint 22.75 To Ball Joint 22.75 D 11.43 Age Upper Sping Pad 18.50 12.55 To Ball Joint/Spindle Angle 18.50 To Ball Joint/Spindle Angle Notes To Ball Joint/Spindle Angle 18.50 E ength 11.06 Inde Angle 11.05 Lever Am Dim. 12.55 Lever Ball Joint/Spindle Angle Change as you go around the track. You can also graph this data. S Back Graph View Print Analyze Su		<u></u>		means these	e angles are	aettina sm	aller. The	Camber, deg	-3.08 2.58	
It is case and produces a negative change. Im Angle 8.36 7.79 L Swing Am 51.0, Ht 25 R Scrub: JBS Orige Rull penter height = 1.6 Colspan="2">Colspan="2" Lower height = 1.6 Colspan="2">Colspan="2" Colspan="2" Colspan= Colspan="2" Colspan= Colspan= C		6		Lower Ball J	oint Angle a	ctually got	bigger in	k, in 66.5	35.97 30.52	2
Li Swing Auin 51.0, Ht 2.5 Ri Scutzi. J865 You can watch Ball Joint/Spindle Angle Change as you put suspension through moli Center height = 1.6 Using Force Based Roll Center You can watch Ball Joint/Spindle Angle Change as you put suspension through moli Center height = 1.6 Using Force Based Roll Center Note Static Layou Dimensions Static Layou Dimensions Kare Detais Left (X) user Bill Joint Height 23.125 Height 23.125 Height 23.125 Joint No 12.91 Joint No 12.91 <td< td=""><td></td><td>Ϊ</td><td>6</td><td>his case and</td><td>d produces a</td><td>a negative</td><td>change.</td><td>Pin Angle</td><td>8.36 7.79</td><td></td></td<>		Ϊ	6	his case and	d produces a	a negative	change.	Pin Angle	8.36 7.79	
Lt Swing Am Static Layout Dimensions You can watch Ball Joint/Spindle Angle Roll Bar Rate, Ib/n Roll Bar Rate, Ib/n Static Layout Dimensions You can watch Ball Joint/Spindle Angle Ball Joint/Spindle Angle Ball Joint/Spindle Angle Static Layout Dimensions More Details Left (X) Height Cover Rate Bott Rate, Ib/n A 26,125 13,3125 Upper Ball Joint B23 Dive, Roll, Squat Draw Big B 15,41 15,55 Lower Ball Joint More Details Left (X) Height Dive, Roll, Squat Draw Big C 27,75 8,255 Lower Spring Pad 13,5 Lower Arm Dim. You can watch Ball Joint/Spindle Angle Change as you go around the track. You can also graph this data. Static Layout Dimensions Notes Comments Notes Summary. Agessive Driving. You can watch Ball Joint/Spindle Angle Ch			•		•	<u> </u>		dle Angle	6.39 11.54	ŧ
And Sectors	Lt Swing A	vm 51.0, Ht 2.5	Varia	oon watah r			Ro	ll Bar Rate, Ib/	in Clc 300	
Orlange as you put suspension intougn Bail Joint/Spinge Angle Change Bail Joint/Spinge Angle Change Bail Joint/Spinge Angle Change Static Layout Dimension More Details Bail Joint Joint Joint (Log) Dimension More Details Details Upper Bail Joint (2.31) Dive, inch Roll, deg Bail Joint Joint (Joint Joint	RESCIUD: .	080	Cha		sali Joini/Sp	inule Angle	Ro	ll Bar Length, i	in 46	
Uning Force Based Roll Center Static Layout Dimensions More Details Left RX Height (X) Upper Ball Joint (23.125 Gener Biologic (13.125) A (26.125) Lower Ball Joint (24.75) Conver Ball Joint (24.75) Conver Spring Pad (19.75) Conver Spring Pad (19.66) Conver Sprin	Orig. Roll C Boll Center	enter height =	2.6 Cha	on If this a	put suspens	is high vo	Bal	l Joint/Spindle	Angle Change	
Using Force Based Roll Center Date mining it beyond its limits. Lower Bail Joint Height (K) A 26.125 19.3125 Upper Frame Privat 12.91 17.065 H III III 16.75 J III 23.125 III III III III 16.75 J III IIII IIII IIII IIII IIII IIII IIII IIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		neight = 1.0	are	likely nutting	the ball ioin	t into hind	Up Up	per Ball Joint `	6.35 6.67	
Static Layout Dimensions More Details: Left (X) Height (X) More Details: Draw Big A 26.125 19.3125 Upper Ball Joint (Dipper Ball Joint (Dipper Ball Joint (Dipper Ball Prive) 23.125 11.49 0 Rear Squat D 11.49 7.425 Upper Spring Pad 12.315 13.55 Lower Ball Joint (Dipper Spring Pad 13.55 Lower Spring Pad 13.55 Length Height Carces, compared to its static (Standing still) and (Leans) due to comering forces, compared to its static (Standing still) and (Leans) due to comering forces, compared to its static (Standing still) and (Leans) due to comering forces, compared to its static (Standing still) and (Leans) due to comering forces, compared to its static (Standing still) and (Leans) due to comering forces, compared to its static (Standing still) and (Leans) due to comering forces, compared to its static (Standing still) and (Leans) due to comering forces, compared to its static (Standing still) and (Leans) due to comering forces, compared to its static (Standing still) and (Leans) due to comering forces, compared to its static (Standing still) and (Leans) due to comering forces, compared to its static (Standing still) and (Leans) due to comering forces, compared to its static (Standing still) and (Leans) due to comering forces, compared to its static (Standing still) and (Leans) due to comering forces, compared to its static (Standing still) and (Leans) due to comering forces, compared to its static (Standing still) and (Leans) due to comering forces, compared to its static (Standing still) and (Leans) due to comering forces, compared to	Using Force	e Based Roll C	enter DUS	ning it bevor	d its limits.			wer ball Joint	-4.64 -4./1	
A Didd (N) Height 13.125 Left (N) Height 23.125 Left (N) Height 23.125 Dive, inch 17.065 Rear Squat 0 11.49 7.425 Lower Ball Joint Upper Frame Pivot 13.75 20.125 1 I Period Perio	∣Static Layo	ut Dimensions	h i i i	Detaile			snow Dive, F	foll, Squat	Draw Pig	1
A 25,125 Upper Bail Joint 21,25 Upper Frame Prior 21,25 Upper Rear Squar 0 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.55	Right (X	() <u>Height</u>	More		t(X) Heig	jht C	Yes	D-#		
c 12.75 10.303 Lower Ball Joint Tits 12.37 17.1003 1 D 11.49 12.425 Lower Frame Pivot 8.49 7.175 1 F 13.75 Lower Spring Pad 16.75 13.55 1 1 Length Angle 11.675 13.55 1 1 1 11.06 14.38 Upper Arm Dim. 10.66 15.69 1 1 11.06 14.38 Upper Arm Dim. 10.66 15.69 1 1 1 11.06 14.38 Upper Arm Dim. 10.66 15.69 1 <t< td=""><td>A 26.125 B 15.41</td><td>19.3125</td><td>Upper Ba</td><td>ame Pivot 12</td><td>125 20.</td><td>125 G</td><td></td><td>, inch Koll,</td><td>deg Rear Squ</td><td>at 🛋</td></t<>	A 26.125 B 15.41	19.3125	Upper Ba	ame Pivot 12	125 20.	125 G		, inch Koll,	deg Rear Squ	at 🛋
D 11.49 7.425 Lower Frame Pivot Upper Spring Pad Lower Spring Pad Lower Spring Pad 8.49 7.175 J 13.75 13.75 13.75 13.75 13.5 15.75 13.5 15.75 13.5 15.75 15.75 15.75 15.75 15.75 15.75 15.5 15.5 10.6 10.	C 27.75	8.25	Lower Ba	Il Joint 24	75 8.2	5 1				•
E 19.75 13.75 Upper Spring Pad Lower Spring Pad 16.75 13.5 K K L The amount the cat's front end rols [leans] due to cornering forces, compared to its static faidanding still angle. A positive(+) angle means the cat is learing to the Right, typical of Left turns. Use a negative(-) number to lean Left Image: 14.38 Upper Arm Dim. Length 10.65 Angle Angle The amount the cat's front end rols [leans] due to cornering forces, compared to its static faidanding still angle. A positive(+) angle means the cat is learing to the Right, typical of Left turns. Use a negative(-) number to lean Left Image: Image: Angle Angle Angle Image:	D 11.49	7.425	Lower Fr	ame Pivot 8.4	9 7.1	75 J	Help (definit	ion)		
F 22.5 5.7.5 Lower Spring Pade 19.5 5.5 L positive(+) angle means the car is learing to the Right, tpical of Left turns. Use a negative(-) number to lean Left Incent Angle Incent Angle Incent Angle Incent Angle Incent Incent Angle Incent	E 19.75	13.75	Upper Sp	ring Pad 16.	.75 13.	5 K	The amount the forces compare	car's front end ro d to its static (sta	olls (leans) due to corner nding still) angle. A	ring
Length Angle Upper Arm Dim. Length Angle Upper Arm Dim. Length Angle Upper Arm Dim. Length Is. 68 Dis. 68 <thdis.< td=""><td>F 22.5</td><td>5.75</td><td>Lower Sp</td><td>ring Pad 19.</td><td>.5 5.5</td><td>L</td><td>positive(+) angle</td><td>means the car is</td><td>leaning to the Right,</td><td></td></thdis.<>	F 22.5	5.75	Lower Sp	ring Pad 19.	.5 5.5	L	positive(+) angle	means the car is	leaning to the Right,	
In the field In the field <th< td=""><td>Length</td><td>Angle</td><td></td><td>- Di-</td><td>igth Ang</td><td>le</td><td> typical of Left tu (Right turns), p (</td><td>rns. Use a negati 39</td><td>ve[-] number to lean Lei</td><td>łt</td></th<>	Length	Angle		- Di-	igth Ang	le	typical of Left tu (Right turns), p (rns. Use a negati 39	ve[-] number to lean Lei	łt
Notes Notes <th< td=""><td>11.06</td><td>14.38</td><td>Upper Ar</td><td>m Dim. 10.</td><td>20 2.9</td><td>58</td><td>(</td><td></td><td></td><td></td></th<>	11.06	14.38	Upper Ar	m Dim. 10.	20 2.9	58	(
Squat Left Scrub Right Scrub L Upper BJ Angle L Lower BJ Angle B Upper BJ Angle B Lower BJ Angle L F Tire BJ Angle RF Tire Force 18 .05 .14 8.35 6.32 9.48 6.53 332.2 1182.9 .0668.3 150.7 .18 .04 .20 -5.71 -4.94 -7.90 -4.95 521.1 506.1 .137 .09 .30 -8.48 -7.12 -10.98 -7.00 668.3 150.7 .282 .02 .16 4.53 4.29 8.05 4.88 387.0 866.3 .149 .03 .27 10.78 9.39 17.30 10.95 394.5 1456.7 .11 .02 .01 1.23 .79 .93 .76 632.2 784.7	10.20		LUIIUIII	10.	50 5.0					
Notes Notes <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>										
Squat Left Scrub Right Scrub L Upper BJ Angle R Upper BJ Angle R Upper BJ BJ Angle R Upper BJ Angle Force BJ Angle Force Force Force Force -18 .05 .14 8.35 6.32 9.48 6.53 332.2 1182.9 .08 .04 20 .5.71 -4.94 -7.90 -4.95 521.1 506.1 1.37 .09 .30 8.48 -7.12 -10.98 -7.00 668.3 150.7 2.82 .02 .03 .27 10.78 9.39 17.30 10.95 394.5 1456.7 .14 .03 .27 10.78 9.39 17.30 10.95 394.5 1456.7 .11 .00 .20 8.60 7.24 12.52 8.06 458.5 1291.4	178 ··· ·									
Back Graph View Print Analyze Suppension Analyze Perf A Image: Suppension Notes Notes Suppension Analyze Perf A Image: Suppension Notes Suppension Analyze Perf A Suppension Analyze Perf Image: Suppension Angle B Uppension B Comments You can watch Ball Joint/Spindle Angle Squat Left Scrub Right L Upper BJ L Lower BJ R Upper B Lower B Angle BJ Angle BJ Angle Force Force Force Force Force Force S 182.9 133.2 <	🖻 Circle	Track Analy	yzer 'Plus'	v4.0 Perfa	rmance Tre	ends [As	phalt Modif	ied Chevell	e clip Ted	
Notes Notes Summary: Agressive Driving. Details. Notes Summary: Agressive Driving. Details. Change as you go around the track. You can also graph this data. Squat Left Scrub Right Scrub L Upper BJ Angle L Lower BJ Angle R Upper BJ Angle R Lower BJ Angle LF Tire Force RF Tire Force 18 .05 .14 8.35 6.32 9.48 6.53 332.2 1182.9 .08 .04 -20 -5.71 -4.94 -7.90 -4.95 521.1 506.1 1.37 .09 .30 -8.48 -7.12 -10.98 -7.00 668.3 150.7 2.82 .02 .08 -2.85 -2.34 -3.65 -2.38 603.1 288.0 2.65 .02 .16 4.53 4.29 8.05 4.88 387.0 866.3 1.49 .03 .27 10.78 9.39 17.30 10.95 394.5 1456.7 11 .00 .20 8.60 7.24 12.52 8.06	🔂 Back G	iraph View	Print Analyz	e <u>S</u> uspension	<u>Analyze Perf</u>	-A You ca	an watch Ba	II Ioint/Spin	dle Angle	
Notes Details. Details. Details. Details. Details. Squat Left Scrub Right Scrub L Upper BJ Angle R Upper BJ Angle R Lower BJ Angle Force RF Tire Force 18 .05 .14 8.35 6.32 9.48 6.53 332.2 1182.9 .08 .04 .20 -5.71 -4.94 -7.90 -4.95 521.1 506.1 1.37 .09 .30 -8.48 -7.12 -10.98 -7.00 668.3 150.7 2.82 .02 .08 -2.85 -2.34 -3.65 -2.38 603.1 288.0 2.65 .02 .16 4.53 4.29 8.05 4.88 387.0 866.3 1.49 .03 .27 10.78 9.39 17.30 10.95 394.5 1456.7 11 .00 .20 8.60 7.24 12.52 8.06 458.5 1291.4 -1.11 .02 .01			L Note	s Summary: Ar	ressive Driving		ie as vou do	around the	track. You can	,
Squat Left Scrub Right Scrub L Upper BJ Angle L Lower BJ Angle R Upper BJ Angle R Lower BJ Angle LF Tire Force RF Tire Force 18 .05 .14 8.35 6.32 9.48 6.53 332.2 1182.9 .08 04 20 -5.71 -4.94 -7.90 -4.95 521.1 506.1 1.37 09 30 -8.48 -7.12 -10.98 -7.00 668.3 150.7 2.82 02 08 -2.85 -2.34 -3.65 -2.38 603.1 288.0 2.65 02 .16 4.53 4.29 8.05 4.88 387.0 866.3 1.49 03 .27 10.78 9.39 17.30 10.95 394.5 1456.7 11 .00 .20 8.60 7.24 12.52 8.06 458.5 1291.4 -1.11 .02 .01 1.23 .79 .93 .76 632.2 784.7 </td <td></td> <td>≣aNo</td> <td>Deta</td> <td>ils.</td> <td></td> <td>also q</td> <td>raph this dat</td> <td>a.</td> <td></td> <td>` </td>		≣aNo	Deta	ils.		also q	raph this dat	a.		`
SquatLeft ScrubRight ScrubL Upper BJ AngleL Lower BJ AngleR Upper BJ AngleR Lower BJ AngleL F Tire ForceRF Tire Force18.05.148.356.329.486.53332.21182.9.080420-5.71-4.94-7.90-4.95521.1506.11.370930-8.48-7.12-10.98-7.00668.3150.72.820208-2.85-2.34-3.65-2.38603.1288.02.6502.164.534.298.054.88387.0866.31.4903.2710.789.3917.3010.95394.51456.711.00.208.607.2412.528.06458.51291.4-1.11.02.011.23.79.93.76632.2784.7	<u>ا النظار</u>	🔜 Comr	nents			J				
SquatLeft ScrubNight ScrubLopper BJ AngleLower BJ AngleNopper BJ AngleN Lower BJ AngleLeft The ForceN The Force18.05.148.356.329.486.53332.21182.9.080420-5.71-4.94-7.90-4.95521.1506.11.37.09.30-8.48-7.12-10.98-7.00668.3150.72.82.02.08-2.85-2.34-3.65-2.38603.1288.02.65.02.164.534.298.054.88387.0866.31.49.03.2710.789.3917.3010.95394.51456.7.11.00.208.607.2412.528.06458.51291.4.111.02.011.23.79.93.76632.2784.7	Cauat	Laft Camb	Diaht		L Lawar D L	D Hanar	Diamar	LE Tire		
18.05.148.356.329.486.53332.21182.9.080420-5.71-4.94-7.90-4.95521.1506.11.370930-8.48-7.12-10.98-7.00668.3150.72.820208-2.85-2.34-3.65-2.38603.1288.02.6502.164.534.298.054.88387.0866.31.4903.2710.789.3917.3010.95394.51456.711.00.208.607.2412.528.06458.51291.4-1.11.02.011.23.79.93.76632.2784.7	Squar	Len Schub	Scruh	Angle	Angle	n opper B.I Angle	B.I Angle	Force	Force	
	18	.05	.14	8.35	6.32	9.48	6.53	332.2	1182.9	
1.37 09 30 -8.48 -7.12 -10.98 -7.00 668.3 150.7 2.82 02 08 -2.85 -2.34 -3.65 -2.38 603.1 288.0 2.65 02 .16 4.53 4.29 8.05 4.88 387.0 866.3 1.49 03 .27 10.78 9.39 17.30 10.95 394.5 1456.7 11 .00 .20 8.60 7.24 12.52 8.06 458.5 1291.4 -1.11 .02 .01 1.23 .79 .93 .76 632.2 784.7	.08	04	20	-5.71	-4.94	-7.90	-4.95	521.1	506.1	
2.82 02 08 -2.85 -2.34 -3.65 -2.38 603.1 288.0 2.65 02 .16 4.53 4.29 8.05 4.88 387.0 866.3 1.49 03 .27 10.78 9.39 17.30 10.95 394.5 1456.7 11 .00 .20 8.60 7.24 12.52 8.06 458.5 1291.4 -1.11 .02 .01 1.23 .79 .93 .76 632.2 784.7	1.37	09	30	-8.48	-7.12	-10.98	-7.00	668.3	150.7	
2.65 02 .16 4.53 4.29 8.05 4.88 387.0 866.3 1.49 03 .27 10.78 9.39 17.30 10.95 394.5 1456.7 11 .00 .20 8.60 7.24 12.52 8.06 458.5 1291.4 -1.11 .02 .01 1.23 .79 .93 .76 632.2 784.7	2 82 - 02 -		08	-2.85	-2.34	-3.65	-2.38	603.1	288.0	
1.49 .03 .27 10.78 9.39 17.30 10.95 394.5 1456.7 11 .00 .20 8.60 7.24 12.52 8.06 458.5 1291.4 -1.11 .02 .01 1.23 .79 .93 .76 632.2 784.7	2.65	02	.16	4.53	4.29	8.05	4.88	387.0	866.3	
11 .00 .20 8.60 7.24 12.52 8.06 458.5 1291.4 -1.11 .02 .01 1.23 .79 .93 .76 632.2 784.7	1.49	03	.27	10.78	9.39	17.30	10.95	394.5	1456.7	
-1.11 .02 .01 1.23 .79 .93 .76 632.2 784.7	11	.00	.20	8.60	7.24	12.52	8.06	458.5	1291.4	
	-1.11	.02	.01	1.23	.79	.93	.76	632.2	784.7	

Figure A 30 Writing ASCII Data Files Plus version has "ASCII File" option here.															
E c	ircle Track	Analyzer 'l	Plus' v4.0	Performan	ce Trends [A phalt Mod	ified Cheve	lle clip Te	ider]						
B B	ack Graph	View Print Notes	Analyze Susp	ension Analyz mary: Agressive	Perf ASCII	File History H	elp(F1) New La	ap Time 17	.40 MPH 103	.4					
128		Comments	Details.	ae ASCII Ei			Last La Improve	p Time 17 ement	.40 103 .00	.4 .0					
Squal	t Left S	crub Right		File Optione	5		LF Tire	RF Tire	LR Tire	RR Tire	Total Tire	LF Bump	at RF Bump	LR Bump	RR Bump L
18	.05	.14		omma Separa	ited		332.2	1182.9	378.1	1012.7	2905.9	0.52	0.95	-0.31	0.12 -
.08 1.37	04 09	20	- In	nclude Text			521.1 668.3	506.1 150.7	515.2 654.5	850.9 1283.6	2393.4 2757.2	-0.10	-1.06 -1.53	0.41	-0.54 -1 0.39 -
2.82	02	08					603.1 387.0	288.0 866.3	1726.7	1946.4 2108.6	4564.2 3919 0	-0.11	-0.48	2.63	2.26 -
1.49	02	.27	X C	reate MS Exc	el (tm) file:		394.5	1456.7	478.0	1738.4	4067.6	0.14	2.03	0.65	2.53 -
-1.11	.00	.20	File Na	me		Browse	458.5 632.2	784.7	457.3	960.2 374.4	2325.5	0.22	0.05	-0.51	-1.05 -
81 .55	01	13	C:\Prog	ram Files\Perfor	mance Trends\(Circle Track A	728.6 705.0	455.0 204.6	682.6 832.9	396.3 931.3	2262.4 2673.9	0.04	-0.75	-0.44	-1.23 4 0.13 2
2.03	.00	.03					626.7	468.0	920.2	1535.1	3550.0	-0.03	0.19	1.72	1.94
2.63	03	03		Save File		Cancel	544.5 543.3	715.4	870.7	1229.0	3358.5	-0.19	-0.14	1.75	1.80
.86 .26	12	30	Tip				695.1 834.9	251.7 0.0	834.7 917.3	616.5 323.6	2398.0 2075.8	-0.41	-1.44	1.13 0.74	0.10 3
.37	11	24					791.2	0.0	944.9	557.4	2293.5	-0.45	-1.24	0.61	-0.18 4
.72	03	.03	CTA												
.03 68	02	.14	ASCII Data	File:											
56	19	43	C:\Progr	am Files\Perfor	mance Trends\C	ircle Track Analy	zer v4.0\Lap O	utput.csv							9
1.58	15	27	Written.												
2.02	08	06 .04	Note: The	file name was c	hanged to C:\I	Program Files\Pe	rformance Tren	ids\Circle Tra	ck Analyzer v4	.0\Lap Output.	csv with a '.cs	v' file extensi	ion to be easily	read by Micro:	soft Excel.
.05	05	04							ок						-1
-1.04	11	22													2
	Home	Insert	Page Lay	yout For	mulas Di	ata Revie	w Fi	e Edit Forn Ime Fe 30 0	at View Help et MPH 72.5	Accel_(.00	Gs %_Throt 0	tle Eng_RI 3971	PM Turn_# 2/4	Curvature 289	Downfor(
Past	Copy	at Painter	B I I	<u> </u>	A A A →			20 21 10 43 10 66	73.2 75.4 77.8	.35 .56 .56	67 100 100	4011 4130 4264	2/4 2/4 2/4	292 314 354	734 718 666
	Clipboard	يوًا. يوا		Font	lý.		.8 1.	80 89 .00 11	80.3 3 82.8	.56 .57	100 100	4399 4535	2/4 2/4	415 499	587 464
	A1	•	0	<i>f</i> _≭ Time			1.	.20 13 .40 16	8 85.2 3 87.7	.57 .57	100 100	4671 4808	2/4 2/4	599 724	361 273
	A	B	C	D	E	F	G 1.	.60 18 .80 21	90.3 592.8	.57 .58	100 100	4945 5083	2/4 2/4	878 1044	201 149
2	0		72.5	Accel Gs		3971 2	8 4 2.	.00 24	4 95.3 2 97.8	.58	100 100	5221 5360	2/4 2/4	1238 1465	105 68
3	0.2	21	73.2	0.35	67	4011 2	& 4 2.	40 30	1 100.	3.57	100	5497	2/4	1695	40
4	0.4	43	75.4	0.56	100	4130 2	& 4 2.	.80 36	2 105.	3.54S	97	5767	2/4	5247	-91
5	0.6	66	77.8	0.56	100	4264 2	$\frac{8.4}{3}$.00 39 .20 42	5 110.	0.533 0.55	90 100	5895 6026	-	-	-121
7	0.8	113	82.8	0.50	100	4535 2	×4 3. &4 3.	.40 45 .60 49	8 112. 1 114.	4.54 7.53	100 100	6157 6286	-	Ē	-163 = -168
ſ.,	.				200	4671 2	& 4 3. 4.	.80 52 .00 56	5 117. 0 119.3	0.52 3.51	100 100	6412 6535	- /	-	-174 -180
	r you ch	IECK "C	reate l	VIS	100	4808 2	& 4 4. h	.20 59 4 <u>0 6</u> 2	5 121. 1 123	5.49 <u>6.10</u>	100	6656 6773	/	_	-185 -191
1		ie, the	e progra		100	4945 2	8.4 4.	Her	e's an e	example	e of a fil	е	<u>-</u>	-	-197
			with a .	.050	100	5221 2	8,4 4. 8,4 5.	writ	ten to a	.txt file	with	-	-	-	-202
1,		n the fi	le wie	a 1	100	5360 2	8.4 5.	u "Co	mma S	eparate	ed"		-	-	-213 -218
1 y	Aicroso	ft Exce	ic, I will ດາ	pen it	100	5497 2	& 4 5.	o unc	hecked	and "Ir	nclude 7	Fext"	-	-	-221 -221
1 h	v defai	ult.			100	5633 2	& 4 5.	che	cked.	This file	opens	by	-	-	-221
17	30100	393	107.6	.535	97	5/6/2	8.4 6.	def	ault in N	lotepad	l.		3/1	8390	-146
18	3.2	425	110	0.55	100	6026 -	6. 6.	.40 10	97 116.	697	-	6388	3/1	3470 1801	-08 52
19	3,4	458	112.4	0.54	100	6157 -	6. 6.	.60 10 .80 10	41 112. 73 108.	397 197	-	6155 5923	3/1 3/1	1515 1263	93 141
20	3.6	491	114.7	0.53	100	6286 -	7.	.00 11 .20 11	04 103. [.] 34 99.6	996 96	-	5690 5459	3/1 3/1	1044 856	199 270
21	3.8	525	117	0.52	100	6535 -	7.	.40 11 60 11	53 95.4	96	-	5228 1,009	3/1	698 568	358 465
23	4.2	595	121.5	0.49	100	6656 -	<			.75		4770	0,1	200	>
24	4.4	631	123.6	0.48	100	6773 -								Ln 1, Col 1	

(C) Performance Trends Inc 2000

